Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(5): e1010775, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37205638

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1008873.].

2.
Front Plant Sci ; 13: 945225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991393

RESUMEN

Excess PPi triggers developmental defects in a cell-autonomous manner. The level of inorganic pyrophosphate (PPi) must be tightly regulated in all kingdoms for the proper execution of cellular functions. In plants, the vacuolar proton pyrophosphatase (H+-PPase) has a pivotal role in PPi homeostasis. We previously demonstrated that the excess cytosolic PPi in the H+-PPase loss-of-function fugu5 mutant inhibits gluconeogenesis from seed storage lipids, arrests cell division in cotyledonary palisade tissue, and triggers a compensated cell enlargement (CCE). Moreover, PPi alters pavement cell (PC) shape, stomatal patterning, and functioning, supporting specific yet broad inhibitory effects of PPi on leaf morphogenesis. Whereas these developmental defects were totally rescued by the expression of the yeast soluble pyrophosphatase IPP1, sucrose supply alone canceled CCE in the palisade tissue but not the epidermal developmental defects. Hence, we postulated that the latter are likely triggered by excess PPi rather than a sucrose deficit. To formally test this hypothesis, we adopted a spatiotemporal approach by constructing and analyzing fugu5-1 PDF1 pro ::IPP1, fugu5-1 CLV1 pro ::IPP1, and fugu5-1 ICL pro ::IPP1, whereby PPi was removed specifically from the epidermis, palisade tissue cells, or during the 4 days following seed imbibition, respectively. It is important to note that whereas PC defects in fugu5-1 PDF1 pro ::IPP1 were completely recovered, those in fugu5-1 CLV1 pro ::IPP1 were not. In addition, phenotypic analyses of fugu5-1 ICL pro ::IPP1 lines demonstrated that the immediate removal of PPi after seed imbibition markedly improved overall plant growth, abolished CCE, but only partially restored the epidermal developmental defects. Next, the impact of spatial and temporal removal of PPi was investigated by capillary electrophoresis time-of-flight mass spectrometry (CE-TOF MS). Our analysis revealed that the metabolic profiles are differentially affected among all the above transgenic lines, and consistent with an axial role of central metabolism of gluconeogenesis in CCE. Taken together, this study provides a conceptual framework to unveil metabolic fluctuations within leaf tissues with high spatio-temporal resolution. Finally, our findings suggest that excess PPi exerts its inhibitory effect in planta in the early stages of seedling establishment in a tissue- and cell-autonomous manner.

3.
Development ; 148(4)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637612

RESUMEN

Because plant cells are glued to each other via their cell walls, failure to coordinate growth among adjacent cells can create cracks in tissues. Here, we find that the unbalanced growth of inner and outer tissues in the clavata3 de-etiolated3 (clv3 det3) mutant of Arabidopsis thaliana stretched epidermal cells, ultimately generating cracks in stems. Stem growth slowed before cracks appeared along clv3 det3 stems, whereas inner pith cells became drastically distorted and accelerated their growth, yielding to stress, after the appearance of cracks. This is consistent with a key role of the epidermis in restricting growth. Mechanical property measurements recorded using an atomic force microscope revealed that epidermal cell wall stiffness decreased in det3 and clv3 det3 epidermises. Thus, we hypothesized that stem integrity depends on the epidermal resistance to mechanical stress. To formally test this hypothesis, we used the DET3 gene as part of a tissue-specific strategy to complement cell expansion defects. Epidermis-driven DET3 expression restored growth and restored the frequency of stem cracking to 20% of the clv3 det3 mutant, demonstrating the DET3-dependent load-bearing role of the epidermis.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Soporte de Peso/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Pared Celular/metabolismo , Células Epidérmicas/citología , Regulación de la Expresión Génica de las Plantas , Tallos de la Planta/citología , Plantas Modificadas Genéticamente , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
4.
Cell Rep ; 32(10): 108127, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32905770

RESUMEN

Shoot formation is accompanied by active cell proliferation and expansion, requiring that metabolic state adapts to developmental control. Despite the importance of such metabolic reprogramming, it remains unclear how development and metabolism are integrated. Here, we show that disruption of ANGUSTIFOLIA3 orthologs (PpAN3s) compromises gametophore shoot formation in the moss Physcomitrium patens due to defective cell proliferation and expansion. Trans-omics analysis reveals that the downstream activity of PpAN3 is linked to arginine metabolism. Elevating arginine level by chemical treatment leads to stunted gametophores and causes Ppan3 mutant-like transcriptional changes in the wild-type plant. Furthermore, ectopic expression of AtAN3 from Arabidopsis thaliana ameliorates the defective arginine metabolism and promotes gametophore formation in Ppan3 mutants. Together, these findings indicate that arginine metabolism is a key pathway associated with gametophore formation and provide evolutionary insights into the establishment of the shoot system in land plants through the integration of developmental and metabolic processes.


Asunto(s)
Arginina/metabolismo , Proteínas de Plantas/química , Brotes de la Planta/química , Regulación de la Expresión Génica de las Plantas
5.
PLoS Genet ; 16(6): e1008873, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32584819

RESUMEN

The regulation of leaf size has been studied for decades. Enhancement of post-mitotic cell expansion triggered by impaired cell proliferation in Arabidopsis is an important process for leaf size regulation, and is known as compensation. This suggests a key interaction between cell proliferation and cell expansion during leaf development. Several studies have highlighted the impact of this integration mechanism on leaf size determination; however, the molecular basis of compensation remains largely unknown. Previously, we identified extra-small sisters (xs) mutants which can suppress compensated cell enlargement (CCE) via a specific defect in cell expansion within the compensation-exhibiting mutant, angustifolia3 (an3). Here we revealed that one of the xs mutants, namely xs2, can suppress CCE not only in an3 but also in other compensation-exhibiting mutants erecta (er) and fugu2. Molecular cloning of XS2 identified a deleterious mutation in CATION CALCIUM EXCHANGER 4 (CCX4). Phytohormone measurement and expression analysis revealed that xs2 shows hyper activation of the salicylic acid (SA) response pathway, where activation of SA response can suppress CCE in compensation mutants. All together, these results highlight the regulatory connection which coordinates compensation and SA response.


Asunto(s)
Antiportadores/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Aumento de la Célula , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas , Mutación con Pérdida de Función , Tamaño de los Órganos/genética , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal/genética
6.
Plant Cell Physiol ; 61(6): 1181-1190, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32321167

RESUMEN

Leaves are formed by coordinated growth of tissue layers driven by cell proliferation and expansion. Compensation, in which a defect in cell proliferation induces compensated cell enlargement (CCE), plays an important role in cell-size determination during leaf development. We previously reported that CCE triggered by the an3 mutation is observed in epidermal and subepidermal layers in Arabidopsis thaliana (Arabidopsis) leaves. Interestingly, CCE is induced in a non-cell autonomous manner between subepidermal cells. However, whether CCE in the subepidermis affects cell size in the adjacent epidermis is still unclear. We induced layer-specific expression of AN3 in an3 leaves and found that CCE in the subepidermis had little impact on cell-size determination in the epidermis, and vice versa, suggesting that CCE is induced in a tissue-autonomous manner. Examination of the epidermis in an3 leaves having AN3-positive and -negative sectors generated by Cre/loxP revealed that, in contrast to the subepidermis, CCE occurred exclusively in AN3-negative epidermal cells, indicating a cell autonomous action of an3-mediated compensation in the epidermis. These results clarified that the epidermal and subepidermal tissue layers have different cell autonomies in CCE. In addition, quantification of cell-expansion kinetics in epidermal and subepidermal tissues of the an3 showed that the tissues exhibited a similar temporal profile to reach a peak cell-expansion rate as compared to wild type. This might be one feature representing that the two tissue layers retain their growth coordination even in the presence of CCE.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Epidermis de la Planta/metabolismo , Hojas de la Planta/metabolismo , Transactivadores/fisiología , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Tamaño de la Célula , Regulación de la Expresión Génica de las Plantas/fisiología , Epidermis de la Planta/citología , Hojas de la Planta/citología , Transactivadores/metabolismo
7.
Plants (Basel) ; 9(3)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143506

RESUMEN

Plastid ribosome biogenesis is important for plant growth and development. REGULATOR OF FATTY ACID COMPOSITION3 (RFC3) is a member of the bacterial ribosomal protein S6 family and is important for lateral root development. rfc3-2 dramatically reduces the plastid rRNA level and produces lateral roots that lack stem cells. In this study, we isolated a suppressor of rfc three2 (sprt2) mutant that enabled recovery of most rfc3 mutant phenotypes, including abnormal primary and lateral root development and reduced plastid rRNA level. Northern blotting showed that immature and mature plastid rRNA levels were reduced, with the exception of an early 23S rRNA intermediate, in rfc3-2 mutants. These changes were recovered in rfc3-2 sprt2-1 mutants, but a second defect in the processing of 16S rRNA appeared in this line. The results suggest that rfc3 mutants may be defective in at least two steps of plastid rRNA processing, one of which is specifically affected by the sprt2-1 mutation. sprt2-1 mutants had a mutation in CRM FAMILY MEMBER 3b (CFM3b), which encodes a plastid-localized splicing factor. A bimolecular fluorescence complementation (BiFC) assay suggested that RFC3 and SPRT2/CFM3b interact with each other in plastids. These results suggest that RFC3 suppresses the nonspecific action of SPRT2/CFM3b and improves the accuracy of plastid rRNA processing.

8.
Plant Cell Physiol ; 60(9): 2026-2039, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31076779

RESUMEN

The tRNA modification at the wobble position of Lys, Glu and Gln (wobbleU* modification) is responsible for the fine-tuning of protein translation efficiency and translation rate. This modification influences organism function in accordance with growth and environmental changes. However, the effects of wobbleU* modification at the cellular, tissue, or individual level have not yet been elucidated. In this study, we show that sulfur modification of wobbleU* of the tRNAs affects leaf development in Arabidopsis thaliana. The sulfur modification was impaired in the two wobbleU*-modification mutants: the URM1-like protein-defective mutant and the Elongator complex-defective mutants. Analyses of the mutant phenotypes revealed that the deficiency in the wobbleU* modification increased the airspaces in the leaves and the leaf size without affecting the number and the area of palisade mesophyll cells. On the other hand, both mutants exhibited increased number of leaf epidermal pavement cells but with reduced cell size. The deficiency in the wobbleU* modification also delayed the initiation of the endoreduplication processes of mesophyll cells. The phenotype of ASYMMETRIC LEAVES2-defective mutant was enhanced in the Elongator-defective mutants, while it was unchanged in the URM1-like protein-defective mutant. Collectively, the findings of this study suggest that the tRNA wobbleU* modification plays an important role in leaf morphogenesis by balancing the development between epidermal and mesophyll tissues.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Células del Mesófilo/metabolismo , Mutación , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN de Transferencia/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Azufre/metabolismo
9.
Front Plant Sci ; 9: 580, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29774040

RESUMEN

Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin ß-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size.

10.
Biol Open ; 7(2)2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29367414

RESUMEN

The plastid evolved from a symbiotic cyanobacterial ancestor and is an essential organelle for plant life, but its developmental roles in roots have been largely overlooked. Here, we show that plastid translation is connected to the stem cell patterning in lateral root primordia. The RFC3 gene encodes a plastid-localized protein that is a conserved bacterial ribosomal protein S6 of ß/γ proteobacterial origin. The rfc3 mutant developed lateral roots with disrupted stem cell patterning and associated with decreased leaf photosynthetic activity, reduced accumulation of plastid rRNAs in roots, altered root plastid gene expression, and changes in expression of several root stem cell regulators. These results suggest that deficiencies in plastid function affect lateral root stem cells. Treatment with the plastid translation inhibitor spectinomycin phenocopied the defective stem cell patterning in lateral roots and altered plastid gene expression observed in the rfc3 mutant. Additionally, when prps17 defective in a plastid ribosomal protein was treated with low concentrations of spectinomycin, it also phenocopied the lateral root phenotypes of rfc3 The spectinomycin treatment and rfc3 mutation also negatively affected symplasmic connectivity between primary root and lateral root primordia. This study highlights previously unrecognized functions of plastid translation in the stem cell patterning in lateral roots.

11.
Biophys J ; 113(5): 1109-1120, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877493

RESUMEN

The spatial gradient of signaling molecules is pivotal for establishing developmental patterns of multicellular organisms. It has long been proposed that these gradients could arise from the pure diffusion process of signaling molecules between cells, but whether this simplest mechanism establishes the formation of the tissue-scale gradient remains unclear. Plasmodesmata are unique channel structures in plants that connect neighboring cells for molecular transport. In this study, we measured cellular- and tissue-scale kinetics of molecular transport through plasmodesmata in Arabidopsis thaliana developing leaf primordia by fluorescence recovery assays. These trans-scale measurements revealed biophysical properties of diffusive molecular transport through plasmodesmata and revealed that the tissue-scale diffusivity, but not the cellular-scale diffusivity, is spatially different along the leaf proximal-to-distal axis. We found that the gradient in cell size along the developmental axis underlies this spatially different tissue-scale diffusivity. We then asked how this diffusion-based framework functions in establishing a signaling gradient of endogenous molecules. ANGUSTIFOLIA3 (AN3) is a transcriptional co-activator, and as we have shown here, it forms a long-range signaling gradient along the leaf proximal-to-distal axis to determine a cell-proliferation domain. By genetically engineering AN3 mobility, we assessed each contribution of cell-to-cell movement and tissue growth to the distribution of the AN3 gradient. We constructed a diffusion-based theoretical model using these quantitative data to analyze the AN3 gradient formation and demonstrated that it could be achieved solely by the diffusive molecular transport in a growing tissue. Our results indicate that the spatially different tissue-scale diffusivity is a core mechanism for AN3 gradient formation. This provides evidence that the pure diffusion process establishes the formation of the long-range signaling gradient in leaf development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Transporte Biológico/fisiología , Proliferación Celular/fisiología , Tamaño de la Célula , Simulación por Computador , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Microscopía Confocal , Modelos Biológicos , Plantas Modificadas Genéticamente , Plasmodesmos/metabolismo , Proteínas Represoras/genética
12.
Plant Cell ; 29(10): 2644-2660, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28899981

RESUMEN

Ribosome-related mutants in Arabidopsis thaliana share several notable characteristics regarding growth and development, which implies the existence of a common pathway that responds to disorders in ribosome biogenesis. As a first step to explore this pathway genetically, we screened a mutagenized population of root initiation defective2 (rid2), a temperature-sensitive mutant that is impaired in pre-rRNA processing, and isolated suppressor of root initiation defective two1 (sriw1), a suppressor mutant in which the defects of cell proliferation observed in rid2 at the restrictive temperature was markedly rescued. sriw1 was identified as a missense mutation of the NAC transcription factor gene ANAC082 The sriw1 mutation greatly alleviated the developmental abnormalities of rid2 and four other tested ribosome-related mutants, including rid3 However, the impaired pre-rRNA processing in rid2 and rid3 was not relieved by sriw1 Expression of ANAC082 was localized to regions where phenotypic effects of ribosome-related mutations are readily evident and was elevated in rid2 and rid3 compared with the wild type. These findings suggest that ANAC082 acts downstream of perturbation of biogenesis of the ribosome and may mediate a set of stress responses leading to developmental alterations and cell proliferation defects.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Ribosomas/metabolismo
13.
J Plant Res ; 130(1): 45-55, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27995376

RESUMEN

The model plant Arabidopsis thaliana has five double-stranded RNA-binding proteins (DRB1-DRB5), two of which, DRB1 and DRB4, are well characterized. In contrast, the functions of DRB2, DRB3 and DRB5 have yet to be elucidated. In this study, we tried to uncover their functions using drb mutants and DRB-over-expressed lines. In over-expressed lines of all five DRB genes, the over-expression of DRB2 or DRB3 (DRB2ox or DRB3ox) conferred a downward-curled leaf phenotype, but the expression profiles of ten small RNAs were similar to that of the wild-type (WT) plant. Phenotypes were examined in response to abiotic stresses. Both DRB2ox and DRB3ox plants exhibited salt-tolerance. When these plants were exposed to cold stress, drb2 and drb3 over-accumulated anthocyanin but DRB2ox and DRB3ox did not. Therefore, the over-expression of DRB2 or DRB3 had pleiotropic effects on host plants. Microarray and deep-sequencing analyses indicated that several genes encoding key enzymes for anthocyanin biosynthesis, including chalcone synthase (CHS), dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS), were down-regulated in DRB3ox plants. When DRB3ox was crossed with the pap1-D line, which is an activation-tagged transgenic line that over-expresses the key transcription factor PAP1 (Production of anthocyanin pigmentation1) for anthocyanin biosynthesis, over-expression of DRB3 suppressed the expression of PAP1, CHS, DFR and ANS genes. DRB3 negatively regulates anthocyanin biosynthesis by modulating the level of PAP1 transcript. Since two different small RNAs regulate PAP1 gene expression, a possible function of DRB3 for small RNA biogenesis is discussed.


Asunto(s)
Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Antocianinas/análisis , Arabidopsis/fisiología , Frío , Expresión Génica , Perfilación de la Expresión Génica , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Asociadas a Pancreatitis , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Tolerancia a la Sal , Análisis de Secuencia de ADN , Estrés Fisiológico
14.
Front Plant Sci ; 8: 2240, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375609

RESUMEN

Leaf abaxial-adaxial patterning is dependent on the mutual repression of leaf polarity genes expressed either adaxially or abaxially. In Arabidopsis thaliana, this process is strongly affected by mutations in ribosomal protein genes and in ribosome biogenesis genes in a sensitized genetic background, such as asymmetric leaves2 (as2). Most ribosome-related mutants by themselves do not show leaf abaxialization, and one of their typical phenotypes is the formation of pointed rather than rounded leaves. In this study, we characterized two ribosome-related mutants to understand how ribosome biogenesis is linked to several aspects of leaf development. Previously, we isolated oligocellula2 (oli2) which exhibits the pointed-leaf phenotype and has a cell proliferation defect. OLI2 encodes a homolog of Nop2 in Saccharomyces cerevisiae, a ribosome biogenesis factor involved in pre-60S subunit maturation. In this study, we found another pointed-leaf mutant that carries a mutation in a gene encoding an uncharacterized protein with a G-patch domain. Similar to oli2, this mutant, named g-patch domain protein1 (gdp1), has a reduced number of leaf cells. In addition, gdp1 oli2 double mutants showed a strong genetic interaction such that they synergistically impaired cell proliferation in leaves and produced markedly larger cells. On the other hand, they showed additive phenotypes when combined with several known ribosomal protein mutants. Furthermore, these mutants have a defect in pre-rRNA processing. GDP1 and OLI2 are strongly expressed in tissues with high cell proliferation activity, and GDP1-GFP and GFP-OLI2 are localized in the nucleolus. These results suggest that OLI2 and GDP1 are involved in ribosome biogenesis. We then examined the effects of gdp1 and oli2 on adaxial-abaxial patterning by crossing them with as2. Interestingly, neither gdp1 nor oli2 strongly enhanced the leaf polarity defect of as2. Similar results were obtained with as2 gdp1 oli2 triple mutants although they showed severe growth defects. These results suggest that the leaf abaxialization phenotype induced by ribosome-related mutations is not merely the result of a general growth defect and that there may be a sensitive process in the ribosome biogenesis pathway that affects adaxial-abaxial patterning when compromised by a mutation.

15.
New Phytol ; 201(4): 1304-1315, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24354517

RESUMEN

• To gain more insight into the physiological function of nitrogen dioxide (NO2), we investigated the effects of exogenous NO2 on growth in Arabidopsis thaliana. • Plants were grown in air without NO2 for 1 wk after sowing and then grown for 1-4 wk in air with (designated treated plants) or without (control plants) NO2. Plants were irrigated semiweekly with a nutrient solution containing 19.7 mM nitrate and 10.3 mM ammonium. • Five-week-old plants treated with 50 ppb NO2 showed a ≤ 2.8-fold increase in biomass relative to controls. Treated plants also showed early flowering. The magnitude of the effects of NO2 on leaf expansion, cell proliferation and enlargement was greater in developing than in maturing leaves. Leaf areas were 1.3-8.4 times larger on treated plants than corresponding leaves on control plants. The NO2-induced increase in leaf size was largely attributable to cell proliferation in developing leaves, but was attributable to both cell proliferation and enlargement in maturing leaves. The expression of different sets of genes for cell proliferation and/or enlargement was induced by NO2, but depended on the leaf developmental stage. • Collectively, these results indicated that NO2 regulates organ growth by controlling cell proliferation and enlargement.


Asunto(s)
Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Dióxido de Nitrógeno/farmacología , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Biomasa , Recuento de Células , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Endorreduplicación/efectos de los fármacos , Flores/efectos de los fármacos , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Tamaño de los Órganos/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Ploidias
16.
Plant Signal Behav ; 8(11): e27204, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24305734

RESUMEN

Compensation refers to an increase in cell size when the cell number is significantly decreased due to the mutation or gain of function of a gene that negatively affects the cell cycle. Given the importance of coordinated growth during organogenesis in both animal and plant systems, compensation is important to understand the mechanism of size regulation. In leaves, cell division precedes cell differentiation (which involves cell expansion); therefore, a decrease in cell number triggers enhanced cell expansion (compensated cell expansion; hereafter, CCE). Functional analyses of genes for which a loss or gain of function triggers compensation have increased our understanding of the molecular mechanisms underlying the decrease in cell number. Nevertheless, the mechanisms that induce enhanced cell expansion (the link between cell cycling and expansion), as well as the cellular machinery mediating CCE, have not been characterized. We recently characterized an important pathway involved in cell enlargement in KRP2-overexpressing plants. Here, we discuss the potential axial role of plant KRPs in triggering enlargement in cells with meristematic features.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tamaño de la Célula , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proliferación Celular , Hojas de la Planta/citología , Hojas de la Planta/metabolismo
17.
BMC Plant Biol ; 13: 143, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24074400

RESUMEN

BACKGROUND: Leaves are determinate organs; hence, precise control of cell proliferation and post-mitotic cell expansion is essential for their growth. A defect in cell proliferation often triggers enhanced post-mitotic cell expansion in leaves. This phenomenon is referred to as 'compensation'. Several lines of evidence from studies on compensation have shown that cell proliferation and post-mitotic cell expansion are coordinately regulated during leaf development. Therefore, compensation has attracted much attention to the mechanisms for leaf growth. However, our understanding of compensation at the subcellular level remains limited because studies of compensation have focused mainly on cellular-level phenotypes. Proper leaf growth requires quantitative control of subcellular components in association with cellular-level changes. To gain insight into the subcellular aspect of compensation, we investigated the well-known relationship between cell area and chloroplast number per cell in compensation-exhibiting lines, and asked whether chloroplast proliferation is modulated in response to the induction of compensation. RESULTS: We first established a convenient and reliable method for observation of chloroplasts in situ. Using this method, we analyzed Arabidopsis thaliana mutants fugu5 and angustifolia3 (an3), and a transgenic line KIP-RELATED PROTEIN2 overexpressor (KRP2 OE), which are known to exhibit typical features of compensation. We here showed that chloroplast number per cell increased in the subepidermal palisade tissue of these lines. We analyzed tetraploidized wild type, fugu5, an3 and KRP2 OE, and found that cell area itself, but not nuclear ploidy, is a key parameter that determines the activity of chloroplast proliferation. In particular, in the case of an3, we uncovered that promotion of chloroplast proliferation depends on the enhanced post-mitotic cell expansion. The expression levels of chloroplast proliferation-related genes are similar to or lower than that in the wild type during this process. CONCLUSIONS: This study demonstrates that chloroplast proliferation is promoted in compensation-exhibiting lines. This promotion of chloroplast proliferation takes place in response to cell-area increase in post-mitotic phase in an3. The expression of chloroplast proliferation-related genes were not promoted in compensation-exhibiting lines including an3, arguing that an as-yet-unknown mechanism is responsible for modulation of chloroplast proliferation in these lines.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética
18.
Plant Cell Physiol ; 54(12): 1989-98, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24068796

RESUMEN

Decreased cell numbers during leaf development often trigger increased cell size, a phenomenon called compensation. In compensation-exhibiting mutants, the unusually high cell expansion activity occurs through two different mechanisms during the post-mitotic stage of leaf development, except in the KIP-RELATED PROTEIN 2-overexpressing line (KRP2 o/e), whose cell sizes are 2-fold greater during proliferative growth. However, the molecular basis of compensated cell expansion (CCE) has not been characterized. The det3-1 mutant has a mutation in the C-subunit of the vacuolar-type H(+)-ATPase (V-ATPase) complex that causes a 50% decrease in its activity and cell size. To determine the contribution of V-ATPase activity to CCE, the cellular phenotypes of double mutants between det3-1 and compensation-exhibiting fugu5-1, an3-4, fas1-5 and KRP2 o/e were analyzed in detail. Interestingly, while decreased V-ATPase activity caused by det3-1 did not suppress CCE in fugu5-1, fas1-5 and an3-4, CCE in KRP2 o/e was totally suppressed. Furthermore, measurements revealed that the activity and quantity of the A-subunit of the V-ATPase complex were significantly increased in the shoots of KRP2 o/e plants. Importantly, the unusually increased size of actively dividing KRP2 o/e cells was restored to normal in the det3-1 background. Taken together, our data strongly suggest that CCE in KRP2 o/e, but not in other compensation-exhibiting mutants, occurs exclusively through the increase of V-ATPase activity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
19.
Curr Biol ; 23(9): 788-92, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23602479

RESUMEN

Coordinated proliferation between clonally distinct cells via inter-cell-layer signaling largely determines the size and shape of plant organs. Nonetheless, the signaling mechanism underlying this coordination in leaves remains elusive because of a lack of understanding of the signaling molecule (or molecules) involved. ANGUSTIFOLIA3 (AN3, also called GRF-INTERACTING FACTOR1) encodes a putative transcriptional coactivator with homology to human synovial sarcoma translocation protein. AN3 transcripts accumulate in mesophyll cells but are not detectable in leaf epidermal cells. However, we found here that in addition to mesophyll cells, epidermal cells of an3 leaves show defective proliferation. This spatial difference between the accumulation pattern of AN3 transcripts and an3 leaf phenotype is explained by AN3 protein movement across cell layers. AN3 moves into epidermal cells after being synthesized within mesophyll cells and helps control epidermal cell proliferation. Interference with AN3 movement results in abnormal leaf size and shape, indicating that AN3 signaling is indispensable for normal leaf development. AN3 movement does not require type II chaperonin activity, which is needed for movement of some mobile proteins. Taking these findings together, we present a novel model emphasizing the role of mesophyll cells as a signaling source coordinating proliferation between clonally independent leaf cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Células del Mesófilo/metabolismo , Epidermis de la Planta/crecimiento & desarrollo , Proteínas Represoras/genética , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Chaperoninas del Grupo II/metabolismo , Epidermis de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas Represoras/metabolismo
20.
Plant Physiol ; 162(2): 831-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23616603

RESUMEN

During leaf development, a decrease in cell number often triggers an increase in cell size. This phenomenon, called compensation, suggests that some system coordinates cell proliferation and cell expansion, but how this is mediated at the molecular level is still unclear. The fugu2 mutants in Arabidopsis (Arabidopsis thaliana) exhibit typical compensation phenotypes. Here, we report that the FUGU2 gene encodes FASCIATA1 (FAS1), the p150 subunit of Chromatin Assembly Factor1. To uncover how the fas1 mutation induces compensation, we performed microarray analyses and found that many genes involved in the DNA damage response are up-regulated in fas1. Our genetic analysis further showed that activation of the DNA damage response and the accompanying decrease of cell number in fas1 depend on ATAXIA TELANGIECTASIA MUTATED (ATM) but not on ATM AND RAD3 RELATED. Kinematic analysis suggested that the delay in the cell cycle leads to a decrease in cell number in fas1 and that loss of ATM partially restores this phenotype. Consistently, both cell size phenotypes and high ploidy phenotypes of fas1 are also suppressed by atm, supporting that the ATM-dependent DNA damage response leads to these phenotypes. Altogether, these data suggest that the ATM-dependent DNA damage response acts as an upstream trigger in fas1 to delay the cell cycle and promote entry into the endocycle, resulting in compensated cell expansion.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Daño del ADN/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ciclo Celular/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Mutación , Fenotipo , Hojas de la Planta/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Poliploidía , Factores de Empalme de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA